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Abstract
The time-dependent su(3) mean field equations are solved for a particular
energy function relevant to nuclear structure. The model energy in the su(3)

enveloping algebra is the sum of two terms which are the squared length of the
angular momentum vector �l · �l and the cubic rotational scalar X3 = tr(lql). The
mean field solutions for this energy have constant intrinsic quadrupole moments
q. In the three-dimensional space of all angular momentum components in the
rotating principal axis frame, a trajectory is defined by the intersection of a
sphere and a hyperboloid. This conclusion is similar to the classical rigid rotor
for which a solution is the intersection of a sphere and the inertia ellipsoid.

PACS number: 21.60.Fw

1. Introduction

This paper reports solutions to the time-dependent su(3) mean field equations in an important
special case relevant to nuclear structure physics. In prior work the su(3) mean field
Hamiltonian was derived [1] and applied to small amplitude wobbling motions in atomic
nuclei [2]. The paper contains three main sections. The introduction reviews the algebraic
mean field method and establishes notation for su(3). Section 2 solves the time-dependent
su(3) equations for a particular rotationally invariant energy function, equation (3), using the
principal axis frame concept. The conclusion discusses other potential applications of the
mean field method to algebraic models of nuclear collective motion.

The two fundamental examples of mean field theory in A-particle fermion science are
Hartree–Fock, which is based on the Lie algebra u(n) of all one-body operators acting on the
exterior product of A-copies of a quantum mechanical n-dimensional single-particle valence
space [3, 4], and Hartree–Fock–Bogoliubov theory, which is founded on the Lie algebra
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o(2n) [5]. The Lie algebras underlying the two pre-eminent mean field theories are not
always stressed in some presentations; nonetheless, the algebras play essential roles in these
two theories. The Lie algebraic structures and associated physical interpretations of the two
paradigms generalize to any algebra of many-body observables.

Suppose that g is a Lie algebra, which I assume for simplicity is an algebra of matrices,
and g∗ denotes its dual space, which can also be identified with a space of matrices. The
dimension of the dual space equals the dimension of the Lie algebra. When g is semisimple,
the dual space may be identified with the algebra itself via the nondegenerate Killing form.
The nondegenerate pairing between a dual space element ρ and a Lie algebra element Z is
assumed to be the real number

〈ρ,Z〉 ≡ tr(ρZ). (1)

Let σ be a representation of g by Hermitian operators on a quantum mechanical Hilbert
space H. Corresponding to every normalized vector � of H is a unique element ρ of the dual
space given by the expectation value

〈ρ,Z〉 = 〈�|σ(Z)|�〉. (2)

Not every dual element is associated with a quantum mechanical state. Those that do are
called density matrices. In the typical situation many distinct quantum state vectors yield the
same density matrix.

The su(3) Lie algebra consists of all Hermitian traceless 3 × 3 complex matrices1. Since
su(3) is semisimple, the dual space su(3)∗ is identified with su(3). Thus an su(3) density
matrix is a Hermitian traceless 3×3 matrix ρ = q − 1

2 il, where q is a real symmetric traceless
matrix and l is an antisymmetric matrix. The real part q is interpreted as the quadrupole
moment expectation and the imaginary part l is the angular momentum expectation [6].
The components of the angular momentum pseudovector �l are related to the entries of the
antisymmetric matrix l via lij = εijklk .

The representation that defines these expectations may correspond to any of the various
physical realizations of su(3) in nuclear physics by irreducible representations, e.g., the Elliott
model for light nuclei [7], the su(3) limit of the interacting boson model [8], pseudo-su(3)

symmetry in medium mass isotopes [9–12] and cluster model su(3) symmetry [13, 14]. Quasi-
dynamical su(3) symmetry applies to heavy nuclei [15] for which spin–orbit splitting and the
pairing force strongly break exact su(3) symmetry. The su(3) representation space is not
irreducible in the quasi-dynamical theory [16, 17]. Thus, rotational bands in nuclei are often
modelled using some su(3) representation space. But the precise physical interpretation of a
density matrix depends on the chosen representation. The application presented in this paper
is relevant to any of these models of nuclear rotation.

The ubiquity of nuclear rotational bands throughout the periodic table shows that their
existence is neither dependent on the details of the strong interaction, nor on the many-fermion
shell model Hilbert space. The band members are characterized simply by their intrinsic
quadrupole moments, moments of inertia and angular momenta. Thus the degrees of freedom
that the su(3) algebra contains are just exactly what are required to provide a useful ‘Ockham’s
razor’ description of these bands. The essential advantage to an su(3) density matrix ρ is that
it ignores secondary nuclear degrees of freedom, which the exact wavefunction � describes,
and zeros in on the primary collective rotational modes.

1 Strictly speaking the real algebra consists of the skew-Hermitian matrices, but the correspondence with physics is
enhanced using Hermitian matrices.
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1.1. Energy and coadjoint orbits

The energy of a physical system that is characterized primarily by some Lie algebra g of
observables must be an approximate function of its generators. This will be true when the
primary degrees of freedom that are part of the algebra are decoupled from other secondary
degrees of freedom. In most group theoretical models in physics, a model Hamiltonian is
chosen that is an element of the universal enveloping algebra U(g). In this favourable situation,
g is called a spectrum generating algebra [18].

Casimirs are elements of the centre of U(g). The Casimirs commute, therefore, with the
Hamiltonian of a spectrum generating algebra. In quantum mechanics, such a Hamiltonian is
represented by a self-adjoint operator that leaves invariant a simultaneous eigenspace of the
Casimir operators. A simultaneous eigenspace of the Casimirs is not generally irreducible,
but, for a compact Lie algebra, it is a direct sum of irreducible subspaces, each of which carries
the same equivalent representation. Thus, the Hamiltonian eigenvalue problem for a compact
spectrum generating algebra simplifies to a diagonalization on irreducible finite-dimensional
subspaces of g.

In mean field theory, the Casimirs are real-valued functions on the dual space. When
g is spectrum generating, the model energy is also a real-valued function on g∗. In this
case, the model densities are limited to a simultaneous level surface of the Casimirs, i.e., a
surface contained in the dual space on which each Casimir function has a constant value. The
analogous concept in quantum mechanics is the restriction to a simultaneous eigenspace of
the Casimir operators.

A simultaneous level surface of the Casimirs may not be connected. A connected
submanifold is given by a coadjoint orbit O of the Lie group G, defined as a covering group
of exp(g). The analogous concept to a coadjoint orbit in mean field theory is an irreducible
representation space in quantum mechanics. A coadjoint orbit is defined as follows: the matrix
Lie group G acts on its matrix Lie algebra g by the adjoint action, Adg(Z) = gZg−1 for all
g ∈ G and Z ∈ g. The group G then acts on the dual space g∗ by the coadjoint action that
satisfies, 〈Ad∗

g(ρ), Z〉 = 〈ρ, Adg−1(Z)〉 for all g ∈ G,ρ ∈ g∗ and Z ∈ g. The coadjoint orbit
O containing the density ρ consists of ρ and all the transformed densities Ad∗

g(ρ) as g ranges
over the entire group G.

The algebra su(3) is spectrum generating for the following model energy in U(su(3)):

E(ρ) = a�l · �l + bX3 for ρ = q − 1
2 il (3)

where the squared length of the angular momentum is �l · �l = −(1/2)tr(l2), the cubic rotational
scalar X3 = tr(lql) and a, b are real constants. By itself the squared angular momentum term
yields a constant moment of inertia rotational band. The X3 term is necessary to distinguish
among densities with the same angular momentum [19, 20]. In deformed even–even isotopes,
two low energy angular momentum Lπ = 2+ states are often found experimentally with quite
different energies, one belongs to the yrast band and the other is the head of a γ band. The
inclusion of the X3 term in the su(3) model energy allows for agreement with experiment
in such cases [21]. The mean field equations corresponding to the energy function (3) are
constructed and solved in the following section.

The simply connected Lie group SU(3) consists of the complex 3 × 3 unitary matrices
with unit determinant. On the dual space, the coadjoint action is Ad∗

gρ = gρg−1 for g ∈ SU(3)

and ρ ∈ su(3)∗. Because any Hermitian matrix can be diagonalized by a unitary matrix, each
SU(3) coadjoint orbit contains a real traceless diagonal matrix that is unique except for the
ordering of the eigenvalues. For a pair of non-negative real numbers (λ, µ) and a choice of



6754 G Rosensteel

eigenvalue ordering, each orbit contains a unique diagonal matrix of the form

� = 1

3




−λ + µ 0 0
0 −λ − 2µ 0
0 0 2λ + µ


 . (4)

The pair (λ, µ) labels the coadjoint orbits and each such diagonal matrix � is an orbit
representative. This particular indexing of the orbits is chosen because, whenever λ and
µ are non-negative integers, equation (4) is the density corresponding to a highest weight
vector of an irreducible SU(3) representation [7].

The coadjoint orbit, denoted by O�, containing the diagonal density �, is

O� = {ρ = Ad∗
g� = g�g−1 ∈ su(3)∗ | g ∈ SU(3)}. (5)

The dual space su(3)∗ is a disjoint union of the coadjoint orbits O� as � ranges over the orbit
representatives (4). When both λ and µ are nonzero, the coadjoint orbit is in general position,
and O� is a six-dimensional surface contained in the eight-dimensional dual space.

The su(3) algebra has two-independent Casimirs of quadratic and cubic orders,

C2(ρ) = tr ρ2 = tr q2 − 1
4 tr l2

(6)
C3(ρ) = tr ρ3 = tr q3 − 3

4 tr (lql).

These functions are trivially constant on each coadjoint orbit, Cr (Ad∗
gρ) = Cr (ρ) for r = 2, 3;

their values at the orbit representatives (4) are

C2(�) = 2
3 (λ2 + λµ + µ2)

(7)
C3(�) = 1

9 (2λ3 + 3λ2µ − 3λµ2 − 2µ3).

The simultaneous level surface in general position for the two su(3) Casimirs, C2(ρ) = C2(�)

and C3(ρ) = C3(�), is the coadjoint orbit O�.

1.2. Hamiltonian vector fields on O�

An important mathematical result is that the coadjoint orbits of any Lie group are symplectic
manifolds [22–24]. The symplectic geometry of a coadjoint orbit determines the mean field
Hamiltonian from the energy function.

Each element Z of the su(3) Lie algebra determines a tangent vector field Z to each
coadjoint orbit. Consider the curve ζ(ε) = exp(iεZ) in the group SU(3). Given any point ρ

in the dual space, the curve ε �→ Ad∗
ζ(ε)ρ = exp(−iεZ)ρ exp(iεZ) lies in the coadjoint orbit

through ρ. The tangent to this curve at ρ is denoted by Z[ρ].
The annihilator Aρ at ρ is the subalgebra

Aρ = {Z ∈ su(3) | [Z, ρ] = 0}. (8)

When Z is an element of the annihilator at ρ,Z[ρ] is a zero tangent vector at ρ because
the curve Ad∗

ζ(ε)ρ is a fixed point. When the difference between two Lie algebra elements

is an element of the annihilator at ρ, the corresponding tangent vectors are equal: Z[ρ] =
W [ρ] if and only if Z − W ∈ Aρ . Therefore, the tangent space to the coadjoint orbit at ρ can
be identified with the vector space su(3) modulo the annihilator Aρ .

For two tangent vectors, Z[ρ] and W [ρ], to the coadjoint orbit at ρ, define the symplectic
form

ωρ(Z[ρ],W [ρ]) = −i〈ρ, [Z,W ]〉. (9)

This antisymmetric bilinear form is well defined on the tangent space to the coadjoint orbit at
ρ since, 〈ρ, [Z,W ]〉 = 〈ρ, [Z′,W ′]〉 when Z − Z′ ∈ Aρ and W − W ′ ∈ Aρ . The form ω
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Table 1. Hamiltonian vector fields in su(3).

Function f Hamiltonian vector field Zf [ρ]

λ(Z) Z
lij −i(Eij − Eji)

qij (Eij + Eji)/2 − (1/3)δij Id
Cr 0
tr(q2) 2q

�l · �l −2il
tr(lql) 4(q2 − (1/3)tr(q2)Id)

is nondegenerate, i.e., ωρ(Z[ρ],W [ρ]) = 0 for all W in the su(3) Lie algebra if and only if
Z[ρ] is a null tangent vector at ρ.

Suppose f is any smooth real-valued function on the coadjoint orbit Oρ . The derivative
of f at ρ in the direction of W [ρ] is defined by

df (W)(ρ) = d

dε
f (exp(−iεW)ρ exp(iεW)) |ε=0 . (10)

Each function f defines a vector field Zf on each coadjoint orbit satisfying

ωρ(Zf [ρ],W [ρ]) = df (W)(ρ) (11)

for all directions W [ρ] tangent to the coadjoint orbit at ρ. The solution Zf [ρ] to this equation
is unique because the symplectic form is nondegenerate. The vector field Zf is called the
Hamiltonian vector field associated with the smooth function f . There exists a Lie algebra
element Zf [ρ] whose corresponding tangent vector is Zf [ρ]. The assignment of the Lie
algebra element Zf [ρ] to the function f at ρ is not unique, but the difference between two
such Lie algebra elements must lie in the annihilator Aρ . When the function f is the energy
itself, the vector field Zf [ρ] is the mean field Hamiltonian h[ρ]. For simplicity of notation, the
‘bars’ over the algebra elements will be omitted, but understood, whenever confusion between
algebra elements and vector fields is unlikely.

For each Lie algebra element Z there is an elementary function λ(Z) on the dual space
defined by λ(Z)(ρ) = 〈ρ,Z〉. The value of the function λ(Z) at ρ is the expectation of the
physical observable corresponding to Z when the system state has the su(3) density ρ. It is
easily shown that the Hamiltonian vector field associated with λ(Z) is Z. The Hamiltonian
vector fields associated with various smooth functions are provided in table 1.

In this table, the functions lij and qij are the ‘coordinate functions’ that map ρ = q−(i/2)l

into the i, j real entries of the matrices l and q, respectively. Eij denotes the elementary matrix
whose only nonzero entry is one at the intersection of row i and column j . Id= E11 +E22 +E33

is the identity matrix.
The Poisson bracket on O� is defined by the symplectic form. The bracket of two smooth

real-valued functions f, g on O� is

{f, g}(ρ) = ωρ(Zf [ρ], Zg[ρ]). (12)

2. Dynamics on O�

The time evolution of an su(3) density is determined by a geometrical condition: a solution
ρ(t) must be an integral curve of the su(3) Hamiltonian vector field h[ρ] or

iρ̇ = [h[ρ], ρ]. (13)
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The su(3) mean field dynamical equation is formally identical to the time-dependent Hartree–
Fock equation. Equation (13) is a finite-dimensional Lax equation [25, 26]. When ρ = q− 1

2 il
and h[ρ] = Re h + i Im h are decomposed into their real and imaginary parts, the dynamical
system becomes

q̇ = 1
2 [l, Re h] − [q, Im h] (14)

l̇ = −2[q, Re h] − [l, Im h]. (15)

Dynamics may be expressed equivalently using the Poisson bracket. When f is any
smooth function on a coadjoint orbit, its time rate of change along a solution curve is

ḟ = {E, f }. (16)

For example, when f = λ(Z), the time rate of change of the observable corresponding to Z
along a solution curve is

d

dt
λ(Z) = 〈ρ̇, Z〉 = itr([ρ, h[ρ]]Z) = ωρ(h[ρ], Z)

= {E, λ(Z)}(ρ). (17)

The last line can be written alternatively as the derivative of E in the direction
Z, {E, λ(Z)}(ρ) = dE(Z)(ρ).

2.1. Rotational invariance

The rotation group SO(3) is a subgroup of the special unitary group SU(3). A density
ρ = q − 1

2 il in su(3)∗ is transformed by a rotation R ∈ SO(3) into the density
Ad∗

Rρ = RρRT = RqRT − 1
2 iRlRT . The energy function (3) is invariant under rotations,

E(Ad∗
Rρ) = E(ρ) for all R ∈ SO(3). As a consequence the angular momentum vector �l is

constant along each solution curve

l̇ij = {E, lij }(ρ) = dE(−i(Eij − Eji))(ρ) = d

dθ
E(R(−θ)ρR(θ)|θ=0 = 0 (18)

where R(θ) = exp(θ(Eij − Eji)) is a rotation in the i − j plane through an angle θ .
The set of three functions {E, �l · �l, l3} Poisson commute. On a six-dimensional orbit O� in

general position, these three functions are independent. Therefore, {E, �l · �l, l3} is a complete
involutive set in the sense of Liouville. A solution curve to the time-dependent mean field
equations, equation (13), lies on a level surface of the involutive set. This level set is a three-
dimensional torus lying in the compact manifold O� and the solution curves are windings on
the torus. But explicit solution curves are difficult to derive and another tactic is useful.

2.2. Principal axis frame

The dynamical system defined by (3) on O� is rather stiff with many constants of the motion.
Since E and �l · �l are constants of the motion, so is X3. Because the Casimirs are constant on
O�, the functions tr q2 and tr q3 are also constant on solution curves. The real eigenvalues
q1, q2, q3 of the traceless symmetric matrix q are constants of the motion too because tr q2 and
tr q3 are the coefficients of the secular equation. This suggests transforming the dynamical
system to the principal axis frame.

Any real symmetric matrix can be diagonalized by a rotation matrix. Hence, there is an
R ∈ SO(3) such that the rotated quadrupole moment is diagonal

q̃ = RqRT = diag(q1, q2, q3). (19)
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The eigenvalues are unique, up to their order, which we fix to be q3 � q1 � q2. From a
physical viewpoint, R rotates the laboratory frame into the rotating body-fixed frame in which,
by definition, the system quadrupole moment q̃ is diagonal. At the same time the conserved
laboratory angular momentum l is transformed to I = RlRT , which is the system angular
momentum projected onto the rotating body-fixed principal axes.

The angular momentum in the body-fixed frame is a pseudovector �I with components
Ii = 1

2εijkIjk . The rotation of the vector angular momentum �I = R�l is equivalent to the
matrix transformation I = RlRT . When two of the three components of �I are zero, the body
is rotating around a principal axis. A tilted rotation in a principal plane requires that one
component of �I is zero. In general, all three components of the angular momentum �I are
nonzero, and the matrix I is antisymmetric, but otherwise arbitrary.

Let M� denote the surface of all principal axis densities contained in the coadjoint orbit
O�. The points ρ̃ = q̃ − 1

2 i I of M� consist of a real diagonal part, q̃, and an imaginary part
I. Each point of M� is defined by a set of six real variables (q1, q2, q3; I1, I2, I3) that satisfy
an algebraic system

∑
k

qk = 0

∑
k

q2
k +

1

2
�I · �I = C2(�) (20)

∑
k

q3
k − 3

4

∑
k

qkI
2
k = C3(�).

The principal axis surface M� is three dimensional when λ and µ are nonzero.
Let R(t) ∈ SO(3) be a smooth time-dependent rotation that transforms a solution curve

of the dynamical system (13) into the submanifold of principal axis densities. Define the
time-dependent antisymmetric matrix �(t) = ṘRT in the Lie algebra so(3) of the rotation
group. The pseudo-vector �ω corresponding to the matrix � is the angular velocity. Let
ρ̃ = RρRT ∈ M� denote the density in the principal axis frame. The Hamiltonian dynamical
system on the coadjoint orbit, equation (13), is equivalent to the following dynamical equation
on M�:

i
dρ̃

dt
= [h�[ρ̃], ρ̃] (21)

where h�[ρ̃] = Rh[ρ]RT + i� is the su(3) Routhian. When the mean field Hamiltonian is a
polynomial in the density, the projection to the body-fixed frame is simply Rh[ρ]RT = h[ρ̃].
In terms of the body-fixed quadrupole moment and angular momentum, the dynamical equation
of a rotationally invariant energy function becomes

d

dt
I = [�, I ] (22)

d

dt
q̃ = [�, q̃] + Rq̇RT

= [�, q̃] + 1
2 [I, R(Re h)RT ] − [q̃, R(Im h)RT ] (23)

where Rq̇RT is given by equation (14). These dynamical equations on the principal axis
submanifold M� differ from the equations on the coadjoint orbit by a Coriolis terms, namely,
the commutator involving the angular velocity matrix.
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On the principal axis submanifold, the time rate of change of the body-fixed angular
momentum obeys the Euler precession equation

İ = [�, I ]
d

dt
�I = −�ω × �I . (24)

The vibration of the quadrupole deformation in the principal axis frame is given by the diagonal
components of equation (23)

d

dt
qk = 1

2
[I, R(Re h)RT ]kk. (25)

Since q̃ is diagonal, the off-diagonal components on the right-hand side of equation (24) must
vanish,

�ij = 1

2(qi − qj )
[I, R(Re h)RT ]ij − (R(Im h)RT )ij for i 
= j. (26)

The solution of the last equation determines the angular velocity as a function of the angular
momentum I and the body-fixed deformation q̃.

For the energy function E of equation (3), the mean field Hamiltonian according to the
table is

h[ρ] = −2i al + 4b(q2 − (1/3) tr(q2)Id). (27)

The principal axis lengths, as previously argued, are constants of the motion for this energy,
and equation (25) yields this result by explicit calculation,

d

dt
qk = 2b[I, q̃2]kk = 0. (28)

The angular velocity equation (26) simplifies to

�ij = 2(a − b(qi + qj ))Iij , or ωk = 2(a + bqk)Ik. (29)

Thus the angular momentum components are proportional to the angular velocity components,
Ik = Ikωk , where the constant moments of inertia in the principal axis frame are
Ik = (2(a + bqk))

−1. The energy function is the rotor energy, E = ∑
k I 2

k

/
(2Ik). The

differential equations to be solved are the precession equations, equation (24), or

İ 1 = −2b(q2 − q3)I2I3

İ 2 = −2b(q3 − q1)I3I1 (30)

İ 3 = −2b(q1 − q2)I1I2.

The solution curves to the precession equations conserve the energy E and the square of
the angular momentum vector �I · �I = �l · �l. The values of the energy and the length of the
angular momentum vector determine X3 = (E − a �I · �I )/b. On the principal axis manifold
M� the two Casimirs equations, equations (20), determine the constant traceless quadrupole
moment q̃ = diag(q1, q2, q3). A solution to the precession equations in the three-dimensional
space of angular momentum components (I1, I2, I3) must lie in the intersection of the surface

of a sphere of radius
√�I · �I , I 2

1 + I 2
2 + I 2

3 = �I · �I , and the surface of the conic section

q1I
2
1 + q2I

2
2 + q3I

2
3 = X3. (31)

The coefficients of this equation for a conic section cannot all have the same sign because the
quadrupole moment is traceless,

∑
k qk = 0. When two coefficients are positive and one is

negative, the shape is oblate like; when two are negative and one is positive, the shape is prolate
like. Therefore, the solution curves to the precession equation in the angular momentum space
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lie on the one-dimensional curve defined by the intersection of a sphere and a hyperboloid.
This su(3) dynamical system is integrable.

Although both a rotating classical rigid body and rotating su(3) system obey the Euler
precession equation, there is a significant difference. The classical rigid body always has
positive moments of inertia and the conserved energy equation defines an ellipsoid. Classical
rotor solutions are defined by the intersection of a sphere with the inertia ellipsoid.

3. Conclusion

The quantum mechanical wavefunctions of the Hamiltonian self-adjoint operator
corresponding to the energy function E used in this paper are challenging to both calculate
numerically and interpret physically and geometrically. The su(3) mean field method for this
energy is a simple mathematical problem whose analytic solutions are easy to understand and
relate to a classical rotor [27].

These compelling advantages persist for more complicated su(3) energy functions, albeit
the very simple physical picture of periodic mean field solutions is lost. Suppose the
energy function E ′ = a�l · �l + bX3 + cX4 includes the quartic term from the integrity basis,
X4 = tr(lq2l) + (�l · �l)(q · q). The Hamiltonian vector field corresponding to the function
f = X4 is

Zf [ρ] = l2q + ql2 − 2
3X3Id + 2(�l · �l)q + 2i(lq2 + q2l − tr(q2)l). (32)

The energy function E ′ is a rotational scalar so it is integrable in the sense of Liouville. The
mean field solutions are conditionally periodic windings on the three-dimensional torus that
is the level surface in the six-dimensional compact manifold M� of the involutive set of
independent functions {E ′, (�l · �l), l3}. A transformation to the principal axis submanifold M�

yields the dynamical system of equations (23). Equation (26) determines the angular velocity;
it is a function of both the quadrupole deformations qk and the angular momentum components
Ik . But, the precession equation (24) is now coupled nontrivially to the axis length equation
because the axis lengths are not constant. From equation (25) the vibrations of the axis lengths
are not zero when the real constant c 
= 0,

d

dt
qk = c

2
(I 2[I, q̃] + [I, q̃]I 2)kk. (33)

Any dynamical symmetry algebra g determines a mean field theory. The model densities
are the points of one coadjoint orbit O� of the dynamical symmetry group in the algebra
dual space g∗. The symplectic structure on this coadjoint orbit yields the mean field
Hamiltonian h[ρ] from a model energy function E(ρ). The time development of the density
is a Hamiltonian dynamical system on the coadjoint orbit. This semi-classical description for
any dynamical symmetry algebra g offers advantages similar to su(3) mean field applications,
i.e., a transparent physical picture and a tractable mathematical theory.

When the dimension of the algebra g is large, representation theory may become
intractable and the mean field approximation is the only useful method available. For
a noncompact algebra, the irreducible representations are infinite dimensional, while the
dimension of a coadjoint orbit is less than the finite dimension of the algebra. For a matrix
algebra, calculations in the mean field approximation involves only matrix multiplications;
su(3) mean field theory requires matrix operations with 3 × 3 matrices.

What is the relationship between the semi-classical mean field method and the quantum
mechanical representation theory of a dynamical symmetry algebra g? Starting from integral
coadjoint orbits, the unitary irreducible representations of g may be constructed via geometric
quantization [22–24]. The integral orbits satisfy a generalization of the Bohr–Sommerfeld
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quantization rules. For example, the su(3) integral coadjoint orbits are those for which λ and
µ are non-negative integers.

Kirillov’s metatheorem asserts that all the properties of a unitary irreducible representation
are encoded in the symplectic geometry of its integral coadjoint orbits. A typical problem in
representation theory is to decompose an irreducible representation of an algebra into a direct
sum of irreducible subspaces of some compact subalgebra. The assertion of Kirillov about
solving such a problem for the most general Lie algebra may be too optimistic [28], yet there are
many encouraging results [22]. One result for su(3) is that the range of the angular momentum
in a coadjoint orbit is bounded from above by λ + µ which agrees with representation theory
for integral orbits. Yet an unsolved problem for su(3) is to determine the multiplicity of a
given angular momentum value in a representation space from the coadjoint orbit data. The
solution to the multiplicity problem is, of course, well known using standards methods of
representation theory. But an understanding of the problem from a strictly coadjoint orbit
perspective might shed significant light on the mean field method’s relationship with quantum
mechanics. Such understanding would not only clarify matters for su(3), but also for other
algebraic mean field models and Hartree–Fock.

The energy function in group theoretical models is approximated usually by a rotationally
invariant polynomial of the algebra generators. The polynomial coefficients are chosen to attain
a good fit to experimental energy levels and transition rates. The generalized Hohenberg–
Kohn theorem [29, 30] shows that there exists an energy function on any dual space g∗ whose
global minimum is the density of the exact ground state wavefunction. But the theorem does
not provide a method for the energy function’s explicit construction. This theorem indicates
that the coadjoint orbit method has the potential to be an exact theory in some respects. The
construction of the exact energy function in traditional Hohenberg–Kohn density functional
theory continues to stimulate the efforts of many researchers, especially in quantum chemistry.
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